qcodes.instrument_drivers.QuantumDesign.DynaCoolPPMS package


qcodes.instrument_drivers.QuantumDesign.DynaCoolPPMS.DynaCool module

class qcodes.instrument_drivers.QuantumDesign.DynaCoolPPMS.DynaCool.DynaCool(*args: Any, **kwargs: Any)[source]

Bases: VisaInstrument

Class to represent the DynaCoolPPMS

Note that this driver assumes the server.py (from the ‘private’ folder) to be running on the DynaCool dedicated control PC.

  • name – The name used internally by QCoDeS for this driver

  • address – The VISA resource name. E.g. ‘TCPIP0::’ with the appropriate IP address instead of Note that the port number is hard-coded into the server.

temp_params = ['temperature_setpoint', 'temperature_rate', 'temperature_settling']
field_params = ['field_target', 'field_rate', 'field_approach']
property error_code: int
get_idn() Dict[str, Optional[str]][source]

Parse a standard VISA *IDN? response into an ID dict.

Even though this is the VISA standard, it applies to various other types as well, such as IPInstruments, so it is included here in the Instrument base class.

Override this if your instrument does not support *IDN? or returns a nonstandard IDN string. This string is supposed to be a comma-separated list of vendor, model, serial, and firmware, but semicolon and colon are also common separators so we accept them here as well.


A dict containing vendor, model, serial, and firmware.

ramp(mode: str = 'blocking') None[source]

Ramp the field to the value given by the field_target parameter


mode – how to ramp, either “blocking” or “non-blocking”. In “blocking” mode, this function does not return until the target field has been reached. In “non-blocking” mode, this function immediately returns.

write(cmd: str) None[source]

Since the error code is always returned, we must read it back

ask(cmd: str) str[source]

Since the error code is always returned, we must read it back

close() None[source]

Make sure to nicely close the server connection

__del__() None

Close the instrument and remove its instance record.

__getitem__(key: str) Union[Callable[[...], Any], Parameter]

Delegate instrument[‘name’] to parameter or function ‘name’.

__getstate__() None

Prevent pickling instruments, and give a nice error message.

__repr__() str

Simplified repr giving just the class and name.

add_function(name: str, **kwargs: Any) None

Bind one Function to this instrument.

Instrument subclasses can call this repeatedly in their __init__ for every real function of the instrument.

This functionality is meant for simple cases, principally things that map to simple commands like *RST (reset) or those with just a few arguments. It requires a fixed argument count, and positional args only. If your case is more complicated, you’re probably better off simply making a new method in your Instrument subclass definition.

  • name – How the Function will be stored within instrument.Functions and also how you address it using the shortcut methods: instrument.call(func_name, *args) etc.

  • **kwargs – constructor kwargs for Function


KeyError – If this instrument already has a function with this name.

add_parameter(name: str, parameter_class: Optional[Type[ParameterBase]] = None, **kwargs: Any) None

Bind one Parameter to this instrument.

Instrument subclasses can call this repeatedly in their __init__ for every real parameter of the instrument.

In this sense, parameters are the state variables of the instrument, anything the user can set and/or get.

  • name – How the parameter will be stored within parameters and also how you address it using the shortcut methods: instrument.set(param_name, value) etc.

  • parameter_class – You can construct the parameter out of any class. Default parameters.Parameter.

  • **kwargs – Constructor arguments for parameter_class.

  • KeyError – If this instrument already has a parameter with this name and the parameter being replaced is not an abstract parameter.

  • ValueError – If there is an existing abstract parameter and the unit of the new parameter is inconsistent with the existing one.

add_submodule(name: str, submodule: Union[InstrumentModule, ChannelTuple]) None

Bind one submodule to this instrument.

Instrument subclasses can call this repeatedly in their __init__ method for every submodule of the instrument.

Submodules can effectively be considered as instruments within the main instrument, and should at minimum be snapshottable. For example, they can be used to either store logical groupings of parameters, which may or may not be repeated, or channel lists. They should either be an instance of an InstrumentModule or a ChannelTuple.

  • name – How the submodule will be stored within instrument.submodules and also how it can be addressed.

  • submodule – The submodule to be stored.

  • KeyError – If this instrument already contains a submodule with this name.

  • TypeError – If the submodule that we are trying to add is not an instance of an Metadatable object.

property ancestors: List[qcodes.instrument.instrument_base.InstrumentBase]

Returns a list of instruments, starting from the current instrument and following to the parent instrument and the parents parent instrument until the root instrument is reached.

ask_raw(cmd: str) str

Low-level interface to visa_handle.ask.


cmd – The command to send to the instrument.


The instrument’s response.

Return type


call(func_name: str, *args: Any) Any

Shortcut for calling a function from its name.

  • func_name – The name of a function of this instrument.

  • *args – any arguments to the function.


The return value of the function.

check_error(ret_code: int) None

Default error checking, raises an error if return code !=0. Does not differentiate between warnings or specific error messages. Override this function in your driver if you want to add specific error messages.


ret_code – A Visa error code. See eg: https://github.com/hgrecco/pyvisa/blob/master/pyvisa/errors.py


visa.VisaIOError – if ret_code indicates a communication problem.

classmethod close_all() None

Try to close all instruments registered in _all_instruments This is handy for use with atexit to ensure that all instruments are closed when a python session is closed.


>>> atexit.register(qc.Instrument.close_all())
connect_message(idn_param: str = 'IDN', begin_time: Optional[float] = None) None

Print a standard message on initial connection to an instrument.

  • idn_param – Name of parameter that returns ID dict. Default IDN.

  • begin_timetime.time() when init started. Default is self._t0, set at start of Instrument.__init__.

delegate_attr_dicts: List[str] = ['parameters', 'functions', 'submodules']

A list of names (strings) of dictionaries which are (or will be) attributes of self, whose keys should be treated as attributes of self.

delegate_attr_objects: List[str] = []

A list of names (strings) of objects which are (or will be) attributes of self, whose attributes should be passed through to self.

device_clear() None

Clear the buffers of the device

static exist(name: str, instrument_class: Optional[type] = None) bool

Check if an instrument with a given names exists (i.e. is already instantiated).

  • name – Name of the instrument.

  • instrument_class – The type of instrument you are looking for.

classmethod find_instrument(name: str, instrument_class: Optional[Type[T]] = None) T

Find an existing instrument by name.

  • name – Name of the instrument.

  • instrument_class – The type of instrument you are looking for.


The instrument found.

  • KeyError – If no instrument of that name was found, or if its reference is invalid (dead).

  • TypeError – If a specific class was requested but a different type was found.

property full_name: str
get(param_name: str) Any

Shortcut for getting a parameter from its name.


param_name – The name of a parameter of this instrument.


The current value of the parameter.

classmethod instances() List[Instrument]

Get all currently defined instances of this instrument class.

You can use this to get the objects back if you lose track of them, and it’s also used by the test system to find objects to test against.


A list of instances.

invalidate_cache() None

Invalidate the cache of all parameters on the instrument. Calling this method will recursively mark the cache of all parameters on the instrument and any parameter on instrument modules as invalid.

This is useful if you have performed manual operations (e.g. using the frontpanel) which changes the state of the instrument outside QCoDeS.

This in turn means that the next snapshot of the instrument will trigger a (potentially slow) reread of all parameters of the instrument if you pass update=None to snapshot.

static is_valid(instr_instance: Instrument) bool

Check if a given instance of an instrument is valid: if an instrument has been closed, its instance is not longer a “valid” instrument.


instr_instance – Instance of an Instrument class or its subclass.

load_metadata(metadata: Mapping[str, Any]) None

Load metadata into this classes metadata dictionary.


metadata – Metadata to load.

property name: str

Name of the instrument This is equivalent to full_name for backwards compatibility.

property name_parts: List[str]
omit_delegate_attrs: List[str] = []

A list of attribute names (strings) to not delegate to any other dictionary or object.

property parent: Optional[qcodes.instrument.instrument_base.InstrumentBase]

Returns the parent instrument. By default this is None. Any SubInstrument should subclass this to return the parent instrument.

print_readable_snapshot(update: bool = False, max_chars: int = 80) None

Prints a readable version of the snapshot. The readable snapshot includes the name, value and unit of each parameter. A convenience function to quickly get an overview of the status of an instrument.

  • update – If True, update the state by querying the instrument. If False, just use the latest values in memory. This argument gets passed to the snapshot function.

  • max_chars – the maximum number of characters per line. The readable snapshot will be cropped if this value is exceeded. Defaults to 80 to be consistent with default terminal width.

classmethod record_instance(instance: Instrument) None

Record (a weak ref to) an instance in a class’s instance list.

Also records the instance in list of all instruments, and verifies that there are no other instruments with the same name.

This method is called after initialization of the instrument is completed.


instance – Instance to record.


KeyError – If another instance with the same name is already present.

classmethod remove_instance(instance: Instrument) None

Remove a particular instance from the record.


instance – The instance to remove

property root_instrument: qcodes.instrument.instrument_base.InstrumentBase
set(param_name: str, value: Any) None

Shortcut for setting a parameter from its name and new value.

  • param_name – The name of a parameter of this instrument.

  • value – The new value to set.

set_address(address: str) None

Set the address for this instrument.


address – The visa resource name to use to connect. The address should be the actual address and just that. If you wish to change the backend for VISA, use the self.visalib attribute (and then call this function).

set_terminator(terminator: Optional[str]) None

Change the read terminator to use.


terminator – Character(s) to look for at the end of a read and to end each write command with. eg. \r\n. If None the terminator will not be set.

shared_kwargs = ()
property short_name: str

Short name of the instrument

snapshot(update: Optional[bool] = False) Dict[Any, Any]

Decorate a snapshot dictionary with metadata. DO NOT override this method if you want metadata in the snapshot instead, override snapshot_base().


update – Passed to snapshot_base.


Base snapshot.

snapshot_base(update: Optional[bool] = True, params_to_skip_update: Optional[Sequence[str]] = None) Dict[Any, Any]

State of the instrument as a JSON-compatible dict (everything that the custom JSON encoder class NumpyJSONEncoder supports).

  • update – If True, update the state by querying the instrument. If None only update if the state is known to be invalid. If False, just use the latest values in memory and never update.

  • params_to_skip_update – List of parameter names that will be skipped in update even if update is True. This is useful if you have parameters that are slow to update but can be updated in a different way (as in the qdac). If you want to skip the update of certain parameters in all snapshots, use the snapshot_get attribute of those parameters instead.


base snapshot

Return type


validate_status(verbose: bool = False) None

Validate the values of all gettable parameters

The validation is done for all parameters that have both a get and set method.


verbose – If True, then information about the parameters that are being check is printed.

write_raw(cmd: str) None

Low-level interface to visa_handle.write.


cmd – The command to send to the instrument.

parameters: Dict[str, ParameterBase] = {}

All the parameters supported by this instrument. Usually populated via add_parameter().

functions: Dict[str, Function] = {}

All the functions supported by this instrument. Usually populated via add_function().

submodules: Dict[str, Union['InstrumentModule', 'ChannelTuple']] = {}

All the submodules of this instrument such as channel lists or logical groupings of parameters. Usually populated via add_submodule().

instrument_modules: Dict[str, 'InstrumentModule'] = {}

All the InstrumentModule of this instrument Usually populated via add_submodule().

Module contents