This page was generated from docs/examples/DataSet/Offline plotting with categorical data.ipynb. Interactive online version: Binder badge.

Offline plotting with categorical data

This notebook is a collection of plotting examples using the plot_dataset function and caterogical (string-valued) data. The notebook should cover all possible permutations of categorical versus numerical data.

[1]:
%matplotlib inline
import numpy as np

from qcodes import Parameter, Measurement, initialise_database, load_or_create_experiment
from qcodes.dataset.plotting import plot_dataset
[2]:
initialise_database()
exp = load_or_create_experiment('offline_plotting_experiment', 'nosample')

1D plotting

Category is the independent parameter

With the category as the independent parameter, plot_dataset will default to a bar plot as long as there is at most one value per category. If more than one value is found for any category a bar plot is not possible, and the plot_dataset falls back to a scatter plot.

[3]:
voltage = Parameter('voltage',
                    label='Voltage',
                    unit='V',
                    set_cmd=None,
                    get_cmd=None)
fridge_config = Parameter('config',
                          label='Fridge configuration',
                          set_cmd=None,
                          get_cmd=None)

meas = Measurement(exp=exp)
meas.register_parameter(fridge_config, paramtype='text')
meas.register_parameter(voltage, setpoints=(fridge_config,))

with meas.run() as datasaver:

    configurations = ['open', 'outer chamber closed',
                      'pumping', 'closed']

    for configuration in configurations:
        datasaver.add_result((fridge_config, configuration),
                             (voltage, np.random.rand()))

dataset = datasaver.dataset
Starting experimental run with id: 18.
[4]:
_ = plot_dataset(dataset)
../../_images/examples_DataSet_Offline_plotting_with_categorical_data_6_0.png
[5]:
with meas.run() as datasaver:

    configurations = ['open', 'outer chamber closed',
                      'pumping', 'closed']

    for configuration in configurations:
        datasaver.add_result((fridge_config, configuration),
                             (voltage, np.random.rand()))


    datasaver.add_result((fridge_config, 'open'),
                         (voltage, np.random.rand()))

dataset = datasaver.dataset

_ = plot_dataset(dataset)
Starting experimental run with id: 19.
../../_images/examples_DataSet_Offline_plotting_with_categorical_data_7_1.png

Category is the dependent parameter

With the categories as the dependent variable, i.e., the outcome of a measurement, the plot_dataset defaults to a scatter plot.

Here is an example with made-up parameters and random values.

UNRESOLVED: How do we ensure the y-axis order?

[6]:
voltage = Parameter('voltage',
                    label='Voltage',
                    unit='V',
                    set_cmd=None,
                    get_cmd=None)
response = Parameter('response',
                     label='Sample response',
                     set_cmd=None,
                     get_cmd=None)

meas = Measurement(exp=exp)
meas.register_parameter(voltage)
meas.register_parameter(response, paramtype='text', setpoints=(voltage,))


with meas.run() as datasaver:

    for volt in np.linspace(0, 1, 50):
        coinvalue = volt + 0.5*np.random.randn()
        if coinvalue < 0:
            resp = 'Bad'
        elif coinvalue < 0.8:
            resp = 'Good'
        else:
            resp = 'Excellent'

        datasaver.add_result((voltage, volt),
                             (response, resp))

dataset = datasaver.dataset
Starting experimental run with id: 20.
[7]:
_ = plot_dataset(dataset)
../../_images/examples_DataSet_Offline_plotting_with_categorical_data_10_0.png

Both variables are categorical

For both variables being categorical, the plot_dataset defaults to a scatter plot.

This case would typically be some summary of a large number of measurements.

[8]:
sample = Parameter('sample',
                    label='Sample',
                    unit='',
                    set_cmd=None,
                    get_cmd=None)
feature = Parameter('feature',
                     label='Physical feature',
                     set_cmd=None,
                     get_cmd=None)

meas = Measurement(exp=exp)
meas.register_parameter(sample, paramtype='text')
meas.register_parameter(feature, paramtype='text', setpoints=(sample,))


with meas.run() as datasaver:

    features = ['superconducting', 'qubit',
                'clean states', 'high bandwidth']

    for samp in ['Nanowire', 'Silicon Chip', 'SQUID', 'Membrane']:

        feats = np.random.randint(1, 5)
        for _ in range(feats):

            datasaver.add_result((sample, samp),
                                 (feature, features[np.random.randint(0, 4)]))

dataset = datasaver.dataset
Starting experimental run with id: 21.
[9]:
_ = plot_dataset(dataset)
../../_images/examples_DataSet_Offline_plotting_with_categorical_data_13_0.png

2D plotting

Naming convention: the x-axis is horizontal, the y-axis is vertical, and the z-axis is out-of-plane.

Categorical data on the x-axis

Here is an example where different samples are tested for conductivity. The longer the name of the sample, the higher the conductivity.

[10]:
sample = Parameter('sample',
                    label='Sample',
                    unit='',
                    set_cmd=None,
                    get_cmd=None)
gate_voltage = Parameter('gate_v',
                         label='Gate voltage',
                         unit='V',
                         set_cmd=None,
                         get_cmd=None)
conductance = Parameter('conductance',
                        label='Conductance',
                        unit='e^2/hbar',
                        set_cmd=None,
                        get_cmd=None)

meas = Measurement(exp=exp)
meas.register_parameter(sample, paramtype='text')
meas.register_parameter(gate_voltage)
meas.register_parameter(conductance, setpoints=(sample, gate_voltage))


with meas.run() as datasaver:

    for samp in ['Nanowire', 'Silicon Chip', 'SQUID', 'Membrane']:

        gate_vs = np.linspace(0, 0.075, 75)

        for gate_v in gate_vs:
            datasaver.add_result((sample, samp),
                                 (gate_voltage, gate_v),
                                 (conductance, len(samp)*gate_v))

dataset = datasaver.dataset
Starting experimental run with id: 22.
[11]:
ax, _ = plot_dataset(dataset)
../../_images/examples_DataSet_Offline_plotting_with_categorical_data_17_0.png

Categorical data on the y-axis

This situation is very similar to having categorical data on the x-axis. We reuse the same example.

[12]:
sample = Parameter('sample',
                    label='Sample',
                    unit='',
                    set_cmd=None,
                    get_cmd=None)
gate_voltage = Parameter('gate_v',
                         label='Gate voltage',
                         unit='V',
                         set_cmd=None,
                         get_cmd=None)
conductance = Parameter('conductance',
                        label='Conductance',
                        unit='e^2/hbar',
                        set_cmd=None,
                        get_cmd=None)

meas = Measurement(exp=exp)
meas.register_parameter(sample, paramtype='text')
meas.register_parameter(gate_voltage)
meas.register_parameter(conductance, setpoints=(gate_voltage, sample))


with meas.run() as datasaver:

    for samp in ['Nanowire', 'Silicon Chip', 'SQUID', 'Membrane']:

        gate_vs = np.linspace(0, 0.01, 75)

        for gate_v in gate_vs:
            datasaver.add_result((sample, samp),
                                 (gate_voltage, gate_v),
                                 (conductance, len(samp)*gate_v))

dataset = datasaver.dataset
Starting experimental run with id: 23.
[13]:
ax, _ = plot_dataset(dataset)
../../_images/examples_DataSet_Offline_plotting_with_categorical_data_20_0.png

Categorical data on the z-axis

Categorical data on the z-axis behaves similarly to numerical data on the z-axis; what kind of plot we get depends on the structure of the setpoints (i.e. the x-axis and y-axis data). If the setpoints are on a grid, we get a heatmap. If not, we get a scatter plot.

Gridded setpoints

[14]:
bias_voltage = Parameter('bias_v',
                         label='Bias voltage',
                         unit='V',
                         set_cmd=None,
                         get_cmd=None)
gate_voltage = Parameter('gate_v',
                         label='Gate voltage',
                         unit='V',
                         set_cmd=None,
                         get_cmd=None)
useful = Parameter('usefulness',
                   label='Usefulness of region',
                   set_cmd=None,
                   get_cmd=None)

meas = Measurement(exp=exp)
meas.register_parameter(gate_voltage)
meas.register_parameter(bias_voltage)
meas.register_parameter(useful, setpoints=(bias_voltage, gate_voltage),
                        paramtype='text')


# a function to simulate the usefulness of a region

def get_usefulness(x, y):
    val = np.sin(x)*np.sin(y)
    if val < -0.4:
        return 'Useless'
    if val < 0:
        return 'Bad'
    if val <0.5:
        return 'Possible'
    return 'Good'

with meas.run() as datasaver:

    for bias_v in np.linspace(0, 3, 100):
        for gate_v in np.linspace(-1, 1, 75):
            datasaver.add_result((bias_voltage, bias_v),
                                 (gate_voltage, gate_v),
                                 (useful, get_usefulness(bias_v, gate_v)))

dataset = datasaver.dataset
Starting experimental run with id: 24.
[15]:
ax, cax = plot_dataset(dataset)
../../_images/examples_DataSet_Offline_plotting_with_categorical_data_24_0.png

Scattered setpoints

The same example as above, but this time with setpoints not on a grid.

[16]:
bias_voltage = Parameter('bias_v',
                         label='Bias voltage',
                         unit='V',
                         set_cmd=None,
                         get_cmd=None)
gate_voltage = Parameter('gate_v',
                         label='Gate voltage',
                         unit='V',
                         set_cmd=None,
                         get_cmd=None)
useful = Parameter('usefulness',
                   label='Usefulness of region',
                   set_cmd=None,
                   get_cmd=None)

meas = Measurement(exp=exp)
meas.register_parameter(gate_voltage)
meas.register_parameter(bias_voltage)
meas.register_parameter(useful, setpoints=(bias_voltage, gate_voltage),
                        paramtype='text')


# a function to simulate the usefulness of a region

def get_usefulness(x, y):
    val = np.sin(x)*np.sin(y)
    if val < -0.4:
        return 'Useless'
    if val < 0:
        return 'Bad'
    if val <0.5:
        return 'Possible'
    return 'Good'

with meas.run() as datasaver:

    for bias_v in 3*(np.random.rand(100)):
        for gate_v in 2*(np.random.rand(75)-0.5):
            datasaver.add_result((bias_voltage, bias_v),
                                 (gate_voltage, gate_v),
                                 (useful, get_usefulness(bias_v, gate_v)))

dataset = datasaver.dataset
Starting experimental run with id: 25.
[17]:
ax, cax = plot_dataset(dataset)
../../_images/examples_DataSet_Offline_plotting_with_categorical_data_27_0.png

Categorical data on x-axis and z-axis

For completeness, we include two examples of this situation. One resulting in a grid and one resulting in a scatter plot. We reuse the example with the x- and y-axes having numerical data with just a slight modification.

[18]:
sample = Parameter('sample',
                         label='Sample',
                         set_cmd=None,
                         get_cmd=None)
gate_voltage = Parameter('gate_v',
                         label='Gate voltage',
                         unit='V',
                         set_cmd=None,
                         get_cmd=None)
useful = Parameter('usefulness',
                   label='Usefulness of region',
                   set_cmd=None,
                   get_cmd=None)

meas = Measurement(exp=exp)
meas.register_parameter(sample, paramtype='text')
meas.register_parameter(gate_voltage)
meas.register_parameter(useful, setpoints=(sample, gate_voltage),
                        paramtype='text')

samples = ['nanowire', '2DEG', 'spin qubit', 'nanowire_alt']

# a function to simulate the usefulness of a region

def get_usefulness(x, y):
    x_num = samples.index(x)*4/len(samples)
    val = np.sin(x_num)*np.sin(y)
    if val < -0.4:
        return 'Useless'
    if val < 0:
        return 'Bad'
    if val <0.5:
        return 'Possible'
    return 'Good'

with meas.run() as datasaver:

    for samp in samples:
        for gate_v in np.linspace(-1, 1, 75):
            datasaver.add_result((sample, samp),
                                 (gate_voltage, gate_v),
                                 (useful, get_usefulness(samp, gate_v)))

dataset = datasaver.dataset
Starting experimental run with id: 26.
[19]:
ax, cax = plot_dataset(dataset)
../../_images/examples_DataSet_Offline_plotting_with_categorical_data_30_0.png
[20]:
sample = Parameter('sample',
                         label='Sample',
                         set_cmd=None,
                         get_cmd=None)
gate_voltage = Parameter('gate_v',
                         label='Gate voltage',
                         unit='V',
                         set_cmd=None,
                         get_cmd=None)
useful = Parameter('usefulness',
                   label='Usefulness of region',
                   set_cmd=None,
                   get_cmd=None)

meas = Measurement(exp=exp)
meas.register_parameter(sample, paramtype='text')
meas.register_parameter(gate_voltage)
meas.register_parameter(useful, setpoints=(sample, gate_voltage),
                        paramtype='text')

samples = ['nanowire', '2DEG', 'spin qubit', 'nanowire_alt']

# a function to simulate the usefulness of a region

def get_usefulness(x, y):
    x_num = samples.index(x)*4/len(samples)
    val = np.sin(x_num)*np.sin(y)
    if val < -0.4:
        return 'Useless'
    if val < 0:
        return 'Bad'
    if val <0.5:
        return 'Possible'
    return 'Good'

with meas.run() as datasaver:

    for samp in samples:
        for gate_v in 2*(np.random.rand(75)-0.5):
            datasaver.add_result((sample, samp),
                                 (gate_voltage, gate_v),
                                 (useful, get_usefulness(samp, gate_v)))

dataset = datasaver.dataset
Starting experimental run with id: 27.
[21]:
ax, cax = plot_dataset(dataset)
../../_images/examples_DataSet_Offline_plotting_with_categorical_data_32_0.png
[ ]: