from enum import IntFlag
from itertools import takewhile
from typing import Any, Dict, Iterable, List, Optional, TextIO, Tuple, cast
from qcodes.instrument import ChannelList, InstrumentChannel, VisaInstrument
from qcodes.parameters import Group, GroupParameter
from qcodes.validators import Enum, Numbers
def _read_curve_file(curve_file: TextIO) -> Dict[Any, Any]:
"""
Read a curve file with extension .330
The file format of this file is shown in test_lakeshore_file_parser.py
in the test module
The output is a dictionary with keys: "metadata" and "data".
The metadata dictionary contains the first n lines of the curve file which
are in the format "item: value". The data dictionary contains the actual
curve data.
"""
def split_data_line(line: str, parser: type = str) -> List[Any]:
return [parser(i) for i in line.split(" ") if i != ""]
def strip(strings: Iterable[str]) -> Tuple[str, ...]:
return tuple(s.strip() for s in strings)
lines = iter(curve_file.readlines())
# Meta data lines contain a colon
metadata_lines = takewhile(lambda s: ":" in s, lines)
# Data from the file is collected in the following dict
file_data: Dict[str, Dict[str, Any]] = dict()
# Capture meta data
parsed_lines = [strip(line.split(":")) for line in metadata_lines]
file_data["metadata"] = {key: value for key, value in parsed_lines}
# After meta data we have a data header
header_items = strip(split_data_line(next(lines)))
# After that we have the curve data
data: List[List[float]] = [
split_data_line(line, parser=float) for line in lines if line.strip() != ""
]
file_data["data"] = dict(zip(header_items, zip(*data)))
return file_data
def _get_sanitize_data(file_data: Dict[Any, Any]) -> Dict[Any, Any]:
"""
Data as found in the curve files are slightly different from
the dictionary as expected by the 'upload_curve' method of the
driver
"""
data_dict = dict(file_data["data"])
# We do not need the index column
del data_dict["No."]
# Rename the 'Units' column to the appropriate name
# Look up under the 'Data Format' entry to find what units we have
data_format = file_data["metadata"]["Data Format"]
# This is a string in the form '4 (Log Ohms/Kelvin)'
data_format_int = int(data_format.split()[0])
correct_name = LakeshoreModel325Curve.valid_sensor_units[data_format_int - 1]
# Rename the column
data_dict[correct_name] = data_dict["Units"]
del data_dict["Units"]
return data_dict
[docs]class LakeshoreModel325Status(IntFlag):
"""
IntFlag that defines status codes for Lakeshore Model 325
"""
sensor_units_overrang = 128
sensor_units_zero = 64
temp_overrange = 32
temp_underrange = 16
invalid_reading = 1
[docs]class LakeshoreModel325Curve(InstrumentChannel):
"""
An InstrumentChannel representing a curve on a Lakeshore Model 325
"""
valid_sensor_units = ["mV", "V", "Ohm", "log Ohm"]
temperature_key = "Temperature (K)"
def __init__(self, parent: "LakeshoreModel325", index: int) -> None:
self._index = index
name = f"curve_{index}"
super().__init__(parent, name)
self.add_parameter("serial_number", parameter_class=GroupParameter)
self.add_parameter(
"format",
val_mapping={
f"{unt}/K": i + 1 for i, unt in enumerate(self.valid_sensor_units)
},
parameter_class=GroupParameter,
)
self.add_parameter("limit_value", parameter_class=GroupParameter)
self.add_parameter(
"coefficient",
val_mapping={"negative": 1, "positive": 2},
parameter_class=GroupParameter,
)
self.add_parameter("curve_name", parameter_class=GroupParameter)
Group(
[
self.curve_name,
self.serial_number,
self.format,
self.limit_value,
self.coefficient,
],
set_cmd=f"CRVHDR {self._index}, {{curve_name}}, "
f"{{serial_number}}, {{format}}, {{limit_value}}, "
f"{{coefficient}}",
get_cmd=f"CRVHDR? {self._index}",
)
[docs] def get_data(self) -> Dict[Any, Any]:
curve = [
float(a)
for point_index in range(1, 200)
for a in self.ask(f"CRVPT? {self._index}, {point_index}").split(",")
]
d = {self.temperature_key: curve[1::2]}
sensor_unit = self.format().split("/")[0]
d[sensor_unit] = curve[::2]
return d
[docs] @classmethod
def validate_datadict(cls, data_dict: Dict[Any, Any]) -> str:
"""
A data dict has two keys, one of which is 'Temperature (K)'. The other
contains the units in which the curve is defined and must be one of:
'mV', 'V', 'Ohm' or 'log Ohm'
This method validates this and returns the sensor unit encountered in
the data dict
"""
if cls.temperature_key not in data_dict:
raise ValueError(
f"At least {cls.temperature_key} needed in the " f"data dictionary"
)
sensor_units = [i for i in data_dict.keys() if i != cls.temperature_key]
if len(sensor_units) != 1:
raise ValueError(
"Data dictionary should have one other key, other then "
"'Temperature (K)'"
)
sensor_unit = sensor_units[0]
if sensor_unit not in cls.valid_sensor_units:
raise ValueError(
f"Sensor unit {sensor_unit} invalid. This needs to be one of "
f"{', '.join(cls.valid_sensor_units)}"
)
data_size = len(data_dict[cls.temperature_key])
if data_size != len(data_dict[sensor_unit]) or data_size > 200:
raise ValueError(
"The length of the temperature axis should be "
"the same as the length of the sensor axis and "
"should not exceed 200 in size"
)
return sensor_unit
[docs] def set_data(
self, data_dict: Dict[Any, Any], sensor_unit: Optional[str] = None
) -> None:
"""
Set the curve data according to the values found the the dictionary.
Args:
data_dict (dict): See `validate_datadict` to see the format of this
dictionary
sensor_unit (str): If None, the data dict is validated and the
units are extracted.
"""
if sensor_unit is None:
sensor_unit = self.validate_datadict(data_dict)
temperature_values = data_dict[self.temperature_key]
sensor_values = data_dict[sensor_unit]
for value_index, (temperature_value, sensor_value) in enumerate(
zip(temperature_values, sensor_values)
):
cmd_str = (
f"CRVPT {self._index}, {value_index + 1}, "
f"{sensor_value:3.3f}, {temperature_value:3.3f}"
)
self.write(cmd_str)
[docs]class LakeshoreModel325Sensor(InstrumentChannel):
"""
InstrumentChannel for a single sensor of a Lakeshore Model 325.
Args:
parent (LakeshoreModel325): The instrument this heater belongs to
name (str)
inp (str): Either "A" or "B"
"""
def __init__(self, parent: "LakeshoreModel325", name: str, inp: str) -> None:
if inp not in ["A", "B"]:
raise ValueError("Please either specify input 'A' or 'B'")
super().__init__(parent, name)
self._input = inp
self.add_parameter(
"temperature",
get_cmd=f"KRDG? {self._input}",
get_parser=float,
label="Temperature",
unit="K",
)
self.add_parameter(
"status",
get_cmd=f"RDGST? {self._input}",
get_parser=lambda status: self.decode_sensor_status(int(status)),
label="Sensor_Status",
)
self.add_parameter(
"type",
val_mapping={
"Silicon diode": 0,
"GaAlAs diode": 1,
"100 Ohm platinum/250": 2,
"100 Ohm platinum/500": 3,
"1000 Ohm platinum": 4,
"NTC RTD": 5,
"Thermocouple 25mV": 6,
"Thermocouple 50 mV": 7,
"2.5 V, 1 mA": 8,
"7.5 V, 1 mA": 9,
},
parameter_class=GroupParameter,
)
self.add_parameter(
"compensation", vals=Enum(0, 1), parameter_class=GroupParameter
)
Group(
[self.type, self.compensation],
set_cmd=f"INTYPE {self._input}, {{type}}, {{compensation}}",
get_cmd=f"INTYPE? {self._input}",
)
self.add_parameter(
"curve_index",
set_cmd=f"INCRV {self._input}, {{}}",
get_cmd=f"INCRV? {self._input}",
get_parser=int,
vals=Numbers(min_value=1, max_value=35),
)
[docs] @staticmethod
def decode_sensor_status(sum_of_codes: int) -> str:
total_status = LakeshoreModel325Status(sum_of_codes)
if sum_of_codes == 0:
return "OK"
status_messages = [
st.name.replace("_", " ")
for st in LakeshoreModel325Status
if st in total_status and st.name is not None
]
return ", ".join(status_messages)
@property
def curve(self) -> LakeshoreModel325Curve:
parent = cast(LakeshoreModel325, self.parent)
return LakeshoreModel325Curve(parent, self.curve_index())
[docs]class LakeshoreModel325Heater(InstrumentChannel):
"""
InstrumentChannel for heater control on a Lakeshore Model 325.
Args:
parent (LakeshoreModel325): The instrument this heater belongs to
name (str)
loop (int): Either 1 or 2
"""
def __init__(self, parent: "LakeshoreModel325", name: str, loop: int) -> None:
if loop not in [1, 2]:
raise ValueError("Please either specify loop 1 or 2")
super().__init__(parent, name)
self._loop = loop
self.add_parameter(
"control_mode",
get_cmd=f"CMODE? {self._loop}",
set_cmd=f"CMODE {self._loop},{{}}",
val_mapping={
"Manual PID": "1",
"Zone": "2",
"Open Loop": "3",
"AutoTune PID": "4",
"AutoTune PI": "5",
"AutoTune P": "6",
},
)
self.add_parameter(
"input_channel", vals=Enum("A", "B"), parameter_class=GroupParameter
)
self.add_parameter(
"unit",
val_mapping={"Kelvin": "1", "Celsius": "2", "Sensor Units": "3"},
parameter_class=GroupParameter,
)
self.add_parameter(
"powerup_enable",
val_mapping={True: 1, False: 0},
parameter_class=GroupParameter,
)
self.add_parameter(
"output_metric",
val_mapping={
"current": "1",
"power": "2",
},
parameter_class=GroupParameter,
)
Group(
[self.input_channel, self.unit, self.powerup_enable, self.output_metric],
set_cmd=f"CSET {self._loop}, {{input_channel}}, {{unit}}, "
f"{{powerup_enable}}, {{output_metric}}",
get_cmd=f"CSET? {self._loop}",
)
self.add_parameter(
"P", vals=Numbers(0, 1000), get_parser=float, parameter_class=GroupParameter
)
self.add_parameter(
"I", vals=Numbers(0, 1000), get_parser=float, parameter_class=GroupParameter
)
self.add_parameter(
"D", vals=Numbers(0, 1000), get_parser=float, parameter_class=GroupParameter
)
Group(
[self.P, self.I, self.D],
set_cmd=f"PID {self._loop}, {{P}}, {{I}}, {{D}}",
get_cmd=f"PID? {self._loop}",
)
if self._loop == 1:
valid_output_ranges = Enum(0, 1, 2)
else:
valid_output_ranges = Enum(0, 1)
self.add_parameter(
"output_range",
vals=valid_output_ranges,
set_cmd=f"RANGE {self._loop}, {{}}",
get_cmd=f"RANGE? {self._loop}",
val_mapping={"Off": "0", "Low (2.5W)": "1", "High (25W)": "2"},
)
self.add_parameter(
"setpoint",
vals=Numbers(0, 400),
get_parser=float,
set_cmd=f"SETP {self._loop}, {{}}",
get_cmd=f"SETP? {self._loop}",
)
self.add_parameter(
"ramp_state", vals=Enum(0, 1), parameter_class=GroupParameter
)
self.add_parameter(
"ramp_rate",
vals=Numbers(0, 100 / 60 * 1e3),
unit="mK/s",
parameter_class=GroupParameter,
get_parser=lambda v: float(v) / 60 * 1e3, # We get values in K/min,
set_parser=lambda v: v * 60 * 1e-3, # Convert to K/min
)
Group(
[self.ramp_state, self.ramp_rate],
set_cmd=f"RAMP {self._loop}, {{ramp_state}}, {{ramp_rate}}",
get_cmd=f"RAMP? {self._loop}",
)
self.add_parameter("is_ramping", get_cmd=f"RAMPST? {self._loop}")
self.add_parameter(
"resistance",
get_cmd=f"HTRRES? {self._loop}",
set_cmd=f"HTRRES {self._loop}, {{}}",
val_mapping={
25: 1,
50: 2,
},
label="Resistance",
unit="Ohm",
)
self.add_parameter(
"heater_output",
get_cmd=f"HTR? {self._loop}",
get_parser=float,
label="Heater Output",
unit="%",
)
[docs]class LakeshoreModel325(VisaInstrument):
"""
QCoDeS driver for Lakeshore Model 325 Temperature Controller.
"""
def __init__(self, name: str, address: str, **kwargs: Any) -> None:
super().__init__(name, address, terminator="\r\n", **kwargs)
sensors = ChannelList(
self, "sensor", LakeshoreModel325Sensor, snapshotable=False
)
for inp in ["A", "B"]:
sensor = LakeshoreModel325Sensor(self, f"sensor_{inp}", inp)
sensors.append(sensor)
self.add_submodule(f"sensor_{inp}", sensor)
self.add_submodule("sensor", sensors.to_channel_tuple())
heaters = ChannelList(
self, "heater", LakeshoreModel325Heater, snapshotable=False
)
for loop in [1, 2]:
heater = LakeshoreModel325Heater(self, f"heater_{loop}", loop)
heaters.append(heater)
self.add_submodule(f"heater_{loop}", heater)
self.add_submodule("heater", heaters.to_channel_tuple())
curves = ChannelList(self, "curve", LakeshoreModel325Curve, snapshotable=False)
for curve_index in range(1, 35):
curve = LakeshoreModel325Curve(self, curve_index)
curves.append(curve)
self.add_submodule("curve", curves)
self.connect_message()
[docs] def upload_curve(
self, index: int, name: str, serial_number: str, data_dict: Dict[Any, Any]
) -> None:
"""
Upload a curve to the given index
Args:
index: The index to upload the curve to. We can only use
indices reserved for user defined curves, 21-35
name
serial_number
data_dict: A dictionary containing the curve data
"""
if index not in range(21, 36):
raise ValueError("index value should be between 21 and 35")
sensor_unit = LakeshoreModel325Curve.validate_datadict(data_dict)
curve = self.curve[index - 1]
curve.curve_name(name)
curve.serial_number(serial_number)
curve.format(f"{sensor_unit}/K")
curve.set_data(data_dict, sensor_unit=sensor_unit)
[docs] def upload_curve_from_file(self, index: int, file_path: str) -> None:
"""
Upload a curve from a curve file. Note that we only support
curve files with extension .330
"""
if not file_path.endswith(".330"):
raise ValueError("Only curve files with extension .330 are supported")
with open(file_path) as curve_file:
file_data = _read_curve_file(curve_file)
data_dict = _get_sanitize_data(file_data)
name = file_data["metadata"]["Sensor Model"]
serial_number = file_data["metadata"]["Serial Number"]
self.upload_curve(index, name, serial_number, data_dict)